
9/8/2015 CS61 Fall 2015 

Abstractions and Reality 

•  Learning Objectives (i.e., after reviewing this 
presentation, you should be able to: ) 
•  Describe some ways that the abstraction provided by the C 

language is similar to and different from the abstraction 
provided by the underlying machine. 

•  Explain the difference between a program and a process. 
•  Visualize how memory is arranged in a process. 
•  Write simple programs to help you answer questions about 

how memory is arranged in a process. 

1 



Getting Started 

•  The code examples used here can be found in the 
cs61-videos repository in the abstractions 
directory. 

•  You should already have your class appliance set up. 
•  You should then be able to clone the repository: 

git clone git://code.seas.Harvard.edu/cs61/cs61-videos 

9/8/2015 CS61 Fall 2015 2 



Abstractions Everywhere 

•  Programming and computer science is chock full of 
abstractions. 

•  Abstractions are a way to: 
•  Manage complexity 
•  Make the unfamiliar familiar 
•  Separate relevant from irrelevant details 

•  But, abstractions also have a cost: 
•  Sometimes they incur overhead (e.g., speed, memory) 
•  Sometimes they hide power 

9/8/2015 CS61 Fall 2015 3 



Some abstractions 

•  A web application framework 
•  A database 
•  Collections of objects 
•  The C language 
•  Assembly language 
•  A processor architecture 

9/8/2015 CS61 Fall 2015 4 



The Abstractions We’ll Examine 

•  The C language & assembly language 
•  Programming languages provide an abstraction that lets 

humans express the meaning of a program. 
•  The language definition of C is higher level than that of 

assembly language, but both are still designed for humans. 
•  Compilers transform C into assembly language. 
•  Assemblers then transform assembly language into machine 

code, targeting a specific … 

•  A processor architecture 
•  A machine implements some processor architecture 
•  There can be multiple implementations of an architecture 

9/8/2015 CS61 Fall 2015 5 



Why bother? 

•  “I’m perfectly happy with my abstractions, why bother 
looking under the covers?” 

•  Understanding the real machine helps us understand 
why some programs are fast/slow. 

•  It helps us understand how things go wrong. 
•  The real machine is more powerful 

•  with power comes responsibility – it is also in some ways 
more “dangerous” 

9/8/2015 CS61 Fall 2015 6 



9/8/2015 CS61 Fall 2015 7 



Language and Machine Abstractions 

9/8/2015 CS61 Fall 2015 8 

1.  I want to print “Hello World!” to the screen. 
2.  I write a C program. 
3.  The compiler translated the C into assembly 
4.  An assembler translated the assembly into 

machine code 
5.  A linker combined the machine code with 

library information to create an executable file. 
6.  The OS created a process in which to execute 

that file. 
7.  “Hello World!” appeared. 



From Program to Process 

•  A process is the realization of a program executing 
on a machine. 

•  It is an abstraction, provided by the operating system. 
•  Provides isolation (you and I can both run things and they 

don’t interfere with each other). 
•  Makes it look like nothing else is running except the process. 
•  Makes it appear as if the process runs from start to end 

without interruption. 

•  But this is all an illusion! 
•  Many processes might be running. 
•  A process can be interrupted. 

9/8/2015 CS61 Fall 2015 9 



9/8/2015 CS61 Fall 2015 10 



But what is a process? 

•  A process is composed of two parts: 
•  A part that keeps track of “stuff”: Address space 
•  A dynamic part: Thread 

•  Address space: 
•  A “place” in which execution happens. 
•  The set of addresses (e.g., memory locations) to which a 

running computation has access. 
•  An address space can be physical (addresses map directly 

to locations in the hardware) or virtual (addresses are “make 
believe” but get translated into locations in hardware). 

•  Address spaces provide protection boundaries. 

9/8/2015 CS61 Fall 2015 11 



9/8/2015 CS61 Fall 2015 12 



The Address Space 

9/8/2015 CS61 Fall 2015 13 

Read-only code 
and data 

0 

Heap 
Read/write data 

Kernel virtual memory 

User Stack 

Memory mapped region for 
shared libraries 

0xFFFFFFFF 

Local: 0xbf------ 
Global: 0x0804a024 
Const Global: 0x08048870 
Heap: 0x08------ (> Global) 
Main: 0x080484a0 
Printf: 0xb7e674a0 
 
 

0x08048000 



Summing in up 

•  The C language presents an abstract machine that 
lets a human express a computation. 

•  Tools (system programs) transform that expression 
into an executable that the operating system knows 
how to execute. 

•  The operating system creates a process to execute 
that program. 

•  The process lives in the memory of a real machine. 
•  The real machine reads instructions and data from 

that memory and executes the instructions. 

9/8/2015 CS61 Fall 2015 14 


