
by loiz Bm tley

programming
with Special Guest Oyster Don Knuth pearls
LITERATE PROGRAMMING

When was the last time you spent a pleasant evening
in a comfortable chair, reading a good program? I
don’t mean the slick subroutine you wrote last sum-
mer, nor even the big system you have to modify
next week. I’m talking about cuddling up with a
classic, and starting to read on page one. Sure, you
may spend more time studying this elegant routine
or worrying about that questionable decision, and
everybody skims over a few parts they find boring.
But let’s get back to the question: when was the last
time you read an excellent program?

Reading tells you where to find it. As a temporary
substitute, this column introduces the programming
style that Knuth used to create his program, and the
WEB programming system that supports the approach.
He calls the style “literate programming”; his goal is
to produce programs that are works of literature. My
dictionary defines literature as “writings having ex-
cellence of form or expression and expressing ideas
of permanent or universal interest.” I think that
Knuth has met his goal.

Until recently, my answer to that question was,
“Never.” I’m asham.ed of that. I wouldn’t have much
respect for an aeronautical engineer who had never
admired a superb airplane, nor for a structural engi-
neer who had never studied a beautiful bridge. Yet I,
like most programmers, was in roughly that position
with respect to programs. That’s tragic, because good
writing requires good reading-you can’t write a
novel if you’ve never read one. But the fault doesn’t
rest entirely with us programmers: most programs
are written to be executed, a few are written to be
maintained, but almost no programs are written so
someone else can read them.

This column describes the style and presents a
small example that Don Knuth was kind enough to
write; next month’s column is devoted to a more
substantial literate program by Knuth.

The Vision
When I wrote my first program, the only reader I
had in mind was the computer that ran it. The
“structured programming” revolution of the early
1970s taught us that we should keep in mind several
other purposes of a program:

Don Knuth is c:ha.nging that. I recently spent a
couple of pleasant evenings reading the five-
hundred-page impll~mentation of the TEX document
compiler. I have no intention of modifying the code,
nor am I much more interested in document compil-
ers than the average programmer-on-the-street. I
read the code, rather, for the same reason that a
student of architecture would spend an afternoon
admiring one of Frank Lloyd Wright’s buildings.
There was a lot to admire in Knuth’s work: the de-
composition of the large task into subroutines, ele-
gant algorithms and data structures, and a coding
style that gives a robust, portable, and maintainable
system. I’m a better programmer for having read the
program, and I had a lot of fun doing it.

Design. As I write a program, I should use a lan-
guage that minimizes the distance between the
problem-solving strategies I have in my head and
the program text I eventually write on paper.

Analysis. When I develop particularly subtle code,
I should use a language that helps me to reason
about its correctness.

Maintenance. When I write a program, I should
keep in mind that its next reader might be some-
one who is totally unfamiliar with it (such as my-
self, a year later).

At this point, of course, I hope that you’ll run out
and read the TEx program yourself; the Further

These insights had a tremendous impact. A few
principles of programming style and a little disci-
pline led to Cobol, Fortran, and assembly routines
that were easier to understand. By the early 198Os,
most of us had stopped debating whether goto
statements were acceptable and had started pro-
gramming in a high-level language that encouraged
cleanliness of expression. -

0 1986 ACM 0001.0782/‘86/0500-0364 750 This raised the problem one level: we can under-

364 Communications of the ACM May 1986 Volume 29 Number 5

Programming Pearls

stand any given procedure, but it’s still hard to make TEX input PROG. TEX, which is in turn fed to the
sense of the system as a whole (“I see the trees, but TEX compiler. The output of this process (the process
where is the forest?“). Researchers have worked on is the left branch in the figure) is the file PROG . DVI,
many kinds of solutions to this problem, such as a “device-independent” output file that can be
documentation techniques and module specification printed on a typesetter or laser printer. Program 1

and interconnection languages. was produced in this fashion.
Knuth’s insight is to focus on the program as a

message from its author to its readers. While typical
programs are organized for the convenience of their
compilers, literate programs are designed for their
human readers. At some point, of course, the pro-
gram must be executed by a computer. Knuth’s sys-
tem allows the programmer to think at a high level,
and has the computer do the dirty work of translat-
ing the literate description into an executable pro-
gram.

The same PROG . WEB file can also serve as input
to the TANGLE program, which produces the Pascal
file PROG . PAS; the Pascal compiler then transforms
that to the executable program PROG. REL. Thus the
right-hand branch in the above figure yields running
code.

Before we move on to the details of the system,
take a few minutes to enjoy Knuth’s Program 1 on
pages 366-367. In addition to illustrating literate pro-
gramming, it is also a particularly efficient solution
to a problem posed in an earlier column.

Knuth chose the names carefully. The WEB source
file is an intricate structure that describes the pro-
gram both in text and Pascal code. The WEAVE pro-
gram spins that into a beautiful document; it unites
the parts into a coherent whole that can be readily
understood by human readers. The TANGLE pro-
gram, on the other hand, produces a Pascal program
that can be processed by a machine, but it is totally
unfit for human consumption. (In the bad old days
well-intentioned programmers “patched” binary ob-
ject code; TANGLE output is as ugly as possible to
ensure that programmers deal only with WEB files.)

The WEB System

0 what a tangled web we weave
When first we practice to deceive!

WALTER SCOTT

Program 1 may look too good to be true, but it is
indeed the genuine article: when Knuth wrote,
tested, and debugged the program, he did so from a
listing almost exactly like the one presented here.’
This section will sketch the mechanics of the WEB
system and the programming style it encourages.

The major components of a WEB program named
PROG are shown in this figure:

0 TEX 0 PASCAL

The programmer writes the “source file” PROG . WEB.
The WEAVE program transforms that file into the

’ Only “almost exactly” because his program was re-typeset to conform to
Communicaiions style. Knuth produced the program in the right size and
shaoe. but he didn’t bother with details such as soacine, font families. and
rag&d-right text justification. We also deleted the ind& and the table of
contents to squeeze the program onto two pages: next month’s program con-
tains both.

There isn’t space enough in this column to give
details on the WEB input file PROG. WEB. Parts of it
are pure TEX typesetting commands, and other parts
are pure Pascal source text. The vast majority,
though, is a straightforward combination of English
text and program text and a few simple commands
to tell which is which. For more details, consult the
Further Reading.

But more important than the mechanics of the
WEB system is its philosophy. The system does not
force one to write in any particular style. Rather, it
provides the ability to present the code and text in
the order desired by the programmer/author.

The Challenge
When I first read Knuth’s “Literate Programming”
paper referenced under Further Reading, I was quite
impressed by his approach. When I read the large
programs referenced there, I was overwhelmed: for
the first time, somebody was proud enough of a sub-
stantial piece of code to publish it for public view-
ing, in a way that is inviting to read. I was so fasci-
nated that I wrote Knuth a letter, asking whether he
had any spare programs handy that I might publish
as a “Programming Pearl.”

But that was too easy for Knuth. He responded,
“Why should you let me choose the program? My
claim is that programming is an artistic endeavor
and that the WEB system gives me the best way to
write beautiful programs. Therefore I should be able
to meet a stiffer test: I should be able to write a
superliterate program that will be noticeably better

May 1986 Volume 29 Number 5 Communications of the ACM 365

Progranmi~fg Pearls

PROGRAM 1. A Small Work of Literature by D. E. Knuth

1. Introduction. Jon Bentley recently discussed
the following interesting problem as one of his “Pro-
gramming Pearls” [Communic&ons of the ACM 27
(December, 1984), l179-118211:

The input consists of two integers M and N, with
M < N. The output is a sorted list of M random
numbers in the range I . . N in which no integer
occurs more than once. For probability buffs, we
desire a sorted selection without replacement in
which each selection occurs equiprobably.

The present program illustrates what I think is the
best solution to this problem, when M is reasonably
large yet small compared to N. it’s the method de-
scribed tersely in the answer to exercise 3.4.2-15 of
my book Seminumerical Algorithms, pp. 141 and 555.

2. For simplicity, all input and output in this pro-
gram is assumed to be handled at the terminal. The
WEB macros read-terminal, prinf, and print-in de-
fined here can easily be changed to accommodate
other conventions.

define read-terminal (#) = read(tty, #)
(input a value from the terminal)

define print (#) =i write(tty, #)
{output to the terminal]

define print-h (#) = wife-h (tfy, #)
{output to the terminal and end the line]

3. Here’s an outline of the entire Pascal program:

program sample;
var (Global va.riables 4)

(The random number generation procedure 5)
begin (The main program e);
end.

4. The global variables M and N have already been
mentioned; we had better declare them. Other
global variables will be declared later.

define M-max = 5000 (max.imum value of M
allowed in this program1

(Global variables 4) =

M: integer; (size of the sampie]
N: integer; (size of the population)
See also sections 7, 9. and 13.
This code is used in section 3.

5. We assume the existence of a system routine

called rund-inf(i, j) that returns a random integer
chosen uniformly in the range i . j.

(The random number generation procedure 5) =

function rund-infk j : integer): integer; extern;
This code is used in section 3.

6. A plan of attack. After the user has specified
M and N, we compute the sample by following a
general procedure recommended by Bentley:

(The main program 6) =

(Establish the values of M and N a);
size + 0; (Initialize set S to empty lo);
while size < M do

begin Tt rand-int(f, N);
(If T is not in S, insert it and increase size II);
end;

(Print the elements of S in sorted order 14)

This code is used in section 3.

7. The main program just sketched has introduced
several more globals. There’s a set S of integers,
whose representation will be deferred until later;
but we can declare two auxiliary integer variables
now.

(Global variables 4) +=

size: integer; {the number of elements in set S}
T: integer; (new candidate for membership in S)

8. The first order of business is to have a short
dialogue with the user.

{Establish the values of M and N 8) =

repeat print('population,size:uNu=u');
read-terminal(N);
ifNsOthen

print& Nushouldubeupositive! ');
until N > 0;
repeat print(‘sample,size :UMU=U');

read-terminal(M);
ifM<Othen

printh(‘M,*,
*shouldn"t,be,negative!')

else if M > N then
print-tn(fMUshouldn' 'tuexceedUN! ')

else if M > M-max then
prinfJn(* (Sorry ,ul ,

~MUmustubeuatUmostu',
M-max: 1, * .) ‘);

until (M 2 0) A (M 5 N) A (M 5 M-max)
This code is used in section 6.

366 Communications of the ACM May 1986 Volume 29 Number 5

Programming Pearls

PROGRAM 1. Knuth’s Program, Continued

9. An ordered hash table. The key idea to an effi-
cient solution of this sampling problem is to main-
tain a set whose entries are easily sorted. The
method of “ordered hash tables” [Amble and Knuth,
The Computer Journal 17 (May 1974), 135-1421 is ide-
ally suited to this task, as we shall see.

Ordered hashing is similar to ordinary linear pro-
bing, except that the relative order of keys is taken
into account. The cited paper derives theoretical re-
sults that will not be rederived here, but we shall
use the following fundamental property: The entries
of an ordered hash table are independent of the order in
which its keys were inserted. Thus, an ordered hash
table is a “canonical” representation of its set of en-
tries.

We shall represent S by an array of 2M integers.
Since Pascal doesn’t permit arrays of variable size,
we must leave room for the largest possible table.

(Global variables 4) +=
hash: array [0 . . M-max + M-max - l] of integer;

{the ordered hash table)
H: 0 . . M-max + M-max - 1; (an index into hash)
H-max: 0 . . M...max + M-max - 1;

{the current hash size)
alpha: real; (the ratio of table size to Nj

10. (Initialize set S to empty 10) =
H-max t 2 * M - 1; alpha t 2 * M/N;
for H c 0 to H-max do hash[H] c 0

This code is used in section 6.

11. Now we come to the interesting part, where
the algorithm tries to insert T into an ordered hash
table. The hash address H = L2M(T - l)/NJ is used
as a starting point, since this quantity is monotonic
in T and almost uniformly distributed in the range
OsH<2M.

(If T is not in S, insert it and increase size II) =
H t trunc(alpha * (T - 1));
while hash[H] > T do

ifH=OthenHtH-maxelseH+H-1;
if hash[H] c T then (T is not present)

begin size t size + 1;
(Insert T into the ordered hash table 12);
end

This code is used in section 6.

12. The heart of ordered hashing is the insertion
process. In general, the new key T will be inserted
in place of a previous key T, < T, which is then re-

inserted in place of Tz < T1, etc., until an empty slot
is discovered.

(Insert T into the ordered hash table 12) =
while hash[H] > 0 do

begin TT t hash[H]; (we have 0 < TT < TJ
hash[H] c T, T c TT;
repeat if H = 0 then H t H-max

elseH+H- 1;
until hash[H] < T;
end;

hash[H] t T
This code is used in section 11.

13. (Global variables 4) +=
TT: integer; (a key that’s being moved)

14. Sorting in linear time. The climax of this pro-
gram is the fact that the entries in our ordered hash
table can easily be read out in increrising order.

Why is this true? Well, we know that the final
state of the table is independent of the order in
which the elements entered. Furthermore it’s easy
to understand what the table looks like when the
entries are inserted in decreasing order, because we
have used a monotonic hash function. Therefore we
know that the table must have an especially simple
form.

Suppose the nonzero entries are T1 < . . . < TIM. If
k of these have “wrapped around” in the insertion
process (i.e., if H passed from 0 to H-max, k times),
table position hash[O] will either be zero (in which
case k must also be zero) or it will contain Tk+l. In
the latter case, the entries Tk+l < . . . < TM and
T, < . . . C Tk will appear in order from left to right.
Thus the output can be sorted with at most two
passes over the table!

define print-it E printAz(hash[H] : 10)

(Print the elements of S in sorted order 14) =
if hash[O] = 0 then (there was no wrap-around)

begin for H c 1 to H-max do
if hash[H] > 0 then print-it;

end
else begin for H t 1 to H-max do

(print the wrapped-around entries}
if hash[H] > 0 then

if hash[H] < hash[O] then print-it;
for H t 0 to H-max do

if hash[H] 2 hash[O] then print-it;
end

This code is used in section 6.

May 1986 Volume 29 Number 5 Communications of the ACM 361

Pragramming Pearls

than an ordinary one, whatever the topic. So how well as readers: Rob Pike writes, “Publishing pro-
about this: You tell me what sort of program you grams is a healthy habit. Every program I’ve written
want me to write, C rind I’ll try to prove the merits of knowing it was to be published was improved by
literate programming by finding the best possible so- that knowledge. I think more clearly when I’m writ-
lution to whatever problem you pose’--at least the ing for an audience, and find it helps to pretend
best by current standards.” there always is one.”

He laid some ground rules for the task. The pro-
gram had to be short enough to fit comfortably in a
column, say, an afternoon’s worth of programming.
It had to be a complete program (not just a frag-
ment), and could not stress input and output (Knuth
has boilerplate to handle that problem, but that isn’t
of interest to most readers). Because his “Literate
Programming” article is built around a program to
print prime numbers, this assignment should avoid
number-theoretic problems.

I chose a problem that I had assigned to several
classes on data structures.

Given a text file .and an integer K, you are to print
the K most common words in the file (and the
number of their occurrences) in decreasing fre-
quency.

I left open a number of issues, such as the precise
definition of words and limits on sizes such as maxi-
mum number of words. I did impose an efficiency
constraint: a user should be able to find the 100 most
frequent words in a twenty-page technical paper
without undue emotional trauma.

An lmportant Solution. In addition to defining (and
naming) the area, Knuth has made two fundamental
contributions to literate programming. The first is
his WEB system, which has been used to develop
several large (and widely used) programs. His in-
sights, though, transcend the particular system: his
“Literate Programming” paper describes WEB look-
alikes implemented for other programming and
document-production languages. The second funda-
mental contribution is a body of literate programs
written in WEB, several of which are referenced un-
der Further Reading. Most computer scientists are as
cowardly as I am; our published programs are rarely
more than tiny (and highly polished) subroutines.
Knuth is almost unique in publishing the code to
workhorse programs. He even believes that it is cor-
rect: in the book ‘@X: The Program he writes that
“I believe that the final bug in TEX was discovered
and removed on November 27, 1985” and offers the
princely sum of $20.48 to the finder of any error still
lurking in the code.

This problem has several pleasant attributes: it
combines simple text manipulation with searching
(to increment the count of this input word) and sort-
ing (for output in decreasing frequency). Further-
more, it’s useful: I run such a program on documents
I write, to find overused worcls.

Next month’s column presents Knuth’s literate so-
lution to this problem. Problem 1 encourages you to
tackle the problem yourself to increase your appreci-
ation of Knuth’s program.

Problems in Paradise. Because it is based on Pascal,
WEB inherits all the universality and some of the
problems of the language (although it nicely patches
several serious defects of Pascal). A WEB program is
written in a mixture of WEB, m, and Pascal; that
can be a barrier both for learning to use the system
and for debugging a program. And the very name
“literate programming” implies that its practitioners
must be competent in both literature and program-
ming; it is hard enough to find people with one of
those skills, let alone both (though WEB does amplify
one’s abilities).

Principles
An Important Problem. Most real programs are writ-
ten to be executed but not read; many published
programs are written to be read but have never been
executed.3 Knuth’s work on literate programs is an
important step towards programs fit for both man
and computing beast. That’s good news for writers as
‘Although I assigned the pn,gram to he described next month. Knuth chose
Program I himself. When I wnt him the “assignment” described above. he
returned both the requested solution and a solution to a problem described in
an earlier column. He has kindly allowed both programs to be published.

3 There are exceptions. The programs in Kernighan and Plauger’s Soffware
Tools are widely used and were included in the text directly from their
executable form (the book and the programs were published by Addison-
Wesley in 1976; a Pascal version appeared in 1981). I am less exacting with
the small programs that appear in this column: I usually test and debug them
in a real language (typically C or AWK). then transliterate the trusted code
into the Pascal-like pseudocode that I use in the column.

Problems
1. Knuth’s programming problem (finding the K

most common words in a document) can be in-
terpreted in several ways; Knuth’s assignment is
somewhere between a and b. Try the problem
yourself in one or more of these versions.

a. An exercise in simple programming. In an
Algol-like language, implement the simplest
program to solve the problem (simplicity
might be measured by lines of source code).

b. An exercise in efficient programming. In an
Algol-like language, implement the most
efficient program to solve the problem
(measured in terms of time and/or space).

360 Communications of the ACM May 1986 Volume 29 Number 5

Programming Pearls

c. An exercise in text processing. The February
column discussed novel solutions to hard
problems. Can you find a way to use existing
text processing tools to solve this problem
with very little new code?

2. Implement Knuth’s Program 1 in your favorite
language, using the best documentation style
that you know. How does it compare to Program
1 in length and comprehensibility?

3. Analyze the run time taken by Program 1, either
mathematically or experimentally.

4. Knuth’s Program 1 solves the sampling problem
in O(M) expected time and O(M) space; show
how it can be solved in O(M) expected time and
O(1) space.

5. [H. Trickey] One can view WEB as providing two
levels of macros: one can define a short string or
use the (Do this now) notation for longer pieces
of code. Is this mechanism qualitatively better
than that provided by other programming envi-
ronments?

6. [H. Trickey] TANGLE intentionally produces
unreadable code. Are there any potential
problems?

7. [D. E. Knuth] A program for “set equality” must
determine whether two input sequences of inte-
gers determine the same set. Show how to use
ordered hash tables to solve this problem.

Further Reading
“Literate programming” is the title and the topic of
Knuth’s article in the May 1984 Computer Journal
(Volume 27, Number 2, pp. 97-111). It introduces a
literate style of programming with the example of
printing the first 1000 prime numbers. Complete
documentation of “The WEB System of Structured
Documentation” is available as Stanford Computer
Science technical report 980 (September 1983, 206
pages); it contains the WEB source code for TANGLE
and WEAVE.

The small programs in this column and next
month’s hint at the benefits of literate programming;
its full power can only be appreciated when you see
it applied to substantial programs. Two large WEB
programs appear in Knuth’s five-volume Computers
and Typesetting, just published by Addison-Wesley.
The source code for TEX is Volume B, entitled
‘@X: The Program (xvi + 5% pages). Volume D is
METAFONT: The Program (xvi + 560 pages). Volume
A is The I?Xbook, Volume C is The METAFONTbook,
and Volume E is Computer Modern Typefaces.

For Correspondence: Jon Bentle , AT&T Bell Laboratories. Room X-317,
600 Mountain Ave., Murray Hd , Nj 07974. ,r

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish. requires a fee and/or specific permission.

ACM Algorithms
Colkcted Algorithms from ACM (CALGO) now includes quar-
terly issues of complete algorithm listings on microfiche as part
of the regular CALGO supplement service.

The ACM Algorithms Distribution Service now offers microfiche
containing complete listings of ACM algorithms, and also offers
compilations of algorithms on tape as a substitute for tapes
containing single algorithms. The fiche and tape compilations
are available by quarter and by year. Tape compilations covering
five years will also be available.

To subscribe to CALGO, request an order form and a free
ACM Publications Catalog from the ACM Subscription De-
partment, Association for Computing Machinery, 11 West
42nd Street, New York, NY 10036. To order from the ACM
Algorithms Distributions Service, refer to the order form that
appears in every issue of ACM Transactions on Mathematical
Software.

May 1986 Volume 29 Number 5 Communications of the ACM 369

