The x86 VM System

 Topics
« Hardware support for virtual memory
« X386 (lots of helpful hardware)

« Learning Objectives:

« Explain what MMU hardware has to do
» Describe the x86 MMU support

11/17/15 CS61 Spring 2015

A Mapping Table

« Conceptually, we need a map from triples to physical
addresses (or faults)
(VA, access, privilege) => (PA/fault)

« While we might imagine storing a mapping for every
byte in the virtual address space, that would get large
pretty rapidly!

* Instead, let's divide memory into fixed-size units
called pages.

« WEe'll store one mapping for each page.
* On the x86, pages are 4 KB.

11/17/15 CS61 Spring 2015 2

Dividing the bits in an address
ea —

R
12-bit offset N

N
12-bit offset

11/17/15 CS61 Spring 2015 3

11/17/15

A Page Table (JC

RO:P:0x1000

Invalid

Invalid

ACCESS:PRIV

Access allowed Physical Address

RO:U:0xC000

Read, write, execute

RW(P30x1F000

RX:U:0xD000O

RW-0:0x9000

(E————,]

Invalid

©

Privilege level
Privileged, unprivileged

CS61 Spring 2015 4

A Page Table

Page 7 RO:P:0x1000

Page 6 Invalid

Page 5 Invalid

Page 4 RO:U:0xC000

Page 3 RW:P:0x1F000

RX:U:0xD000

RW:U:0x9P80)

pom—

P
Page 1

Invalid

Page O

11/17/15

Let’s translate an address!

A user process tries to read
address Oxi234 \¥ats ﬁ%\y
N s =~

e B
\

09224
@L@

e

CS61 Spring 2015

When a user process issues a read for the address 0x7654, what happens?

@ Allow Single Choice Only O Allow Multiple Choices L] shuffle Answers M Allow Retry [Limit Attempts

It is translated to physical address 0x1654

Close! Check the two fields in the PTE that are not the physical page number.

It is translated to phyiscal address 0xC654

Not quite. Go back and check out how we form the physical address and also what the rest of the PTE

It is translated to physical address 0x765C

Preview arms Privacy & cookies

11/17/15 CS61 Spring 2015

a8 8 8 &

When a user process tries to perform a write to address 0x1230, what
happens?

@ Allow Single Choice Only O Allow Multiple Choices L] shuffle Answers b Allow Retry [Limit Attempts

It writes to physical address 0x9230

Correct!

It writes to physical address 0x1239

Not quite! Go back and check how we construct the phyiscal address.

It wirites 10 nhwsicral address woN0NN230

Preview arms Privacy & cookies

11/17/15 CS61 Spring 2015

How big are page tables?

* 30, let’'s see how large our page tables are:
« How many 4 KB pages are there in a 32-bit address

space?
e Thw | PA | 2oL 2\
M ~Ae——t ?ﬂ‘ﬁo
n32 -

J

o -7 = \N\ﬁvw

f

11/17/15 CS61 Spring 2015 8

Intel x86 VM System

* The Intel x86 Virtual Memory Architecture is a
reflection of many major revisions that have occurred
over various generations of Intel microprocessors.

* While this makes the system a bit more complicated
than some others, it is the most widely used platform
today, so understanding it will serve you well.

* Note:
» This presentation does not cover x86 in its full glory.

« We cover it sufficiently so that you can tackle assignment 6
and so that should you ever need to dig into the details, they
will make sense.

11/17/15 CS61 Spring 2015 9

X86 Historical Summary

Introduced

N Instr

8080

8086 1978

8088

1974

1981

133
133

80286 1982 16 MB 16 MB

80386

380486 1989

Pentium

Pentium 4

1985

1993

2004

187
193
198
234

Phys. Mem | VAS size
64 KB None
1 MB None
4 GB 64 TB
4 GB 64 TB
64 GB 64 TB
1TB 16 EB

11/17/15

CS61 Spring 2015

10

X86 Address Translation ?f

32-bit address——~__ @4 \

L1 index L2 index Offset y A0 ff’%
Bits 22-31 Bits 12-21 Bits 0-11 / 4V
10 bits 10 bits S22 hits—" N/
L1 page table L2 page table }%‘
~ pag : pag ’Q\‘b
Vit '
¥ v ,_ %
3
CR3 register I_ﬁ
onfri N Page Table Physical page
1024 entries 4 KB

CS61 Spring 2015
11/17/15 11

G
L
v}
B
(=]

Manlpulatlng Addresses .

™~ QLZ«bWHGﬂm(T
L1 index | L2 index 1 Offset

Bits 2231 | Bits12-21 ||| Bits 0-11)

| 10bits € 10bits A NGO YD bif bits ")

 Some handy macros! First, for pages
#define PAGESHIFT 12

#define PAGESIZE (1 << PAGESHIFT)
#define PAGEOFFMASK (PAGESIZE - 1)

#define PAGENUMBER(VA) ((uintptr_t)VA >> PAGESHIFT)
* Next for 2-level page tables:
#define PAGETABLE_ENTRIES (1 << 10

#define LLPAGEINDEX(VA) ((uintptr_t)VA >> 22)
#define L2ZPAGEINDEX(VA) \

\ J -

((uintptr_t)VA >> 12) & (PAGETABLE_NENTRIES - 1)
_,—'__-—-\—_‘_——_—-‘_/
11/17/15 CS61 Spring 2015 12

I:;__]!
Q)

(%
'ig'
L1
<)

=

S —

Reading Addresses
32-bit address

L1 index L2 index Offset
Bits 22-31 Bits 12-21 Bits 0-11
10 bits (10)bits T 12bits ., 2

« Let’s practice extracting fields from hex addresses.
« How many hex digits for the offset?
« How many for the L2 index?
» How many for the L1 index? ~.
. OXxDEAD A =18
. Offset = Q%G_E'?
. L2 Index =0+ DD o\ Eﬂ(ﬁx
+ L1Index =)L 7 A @o | H‘\EF@

-

:\O

11/17/15 CS61 Spring 2015

Wrapping Up

» Page tables are the data structure that maps from
virtual addresses to physical addresses.

 The x86 implements 2-level page tables to conserve
memory.

« While a complete flat page table would require 4 MB
of memory, a tiny process can make do with far less
using 2-level page tables:

« 1 L1 page table (4 KB)
« 1L2 page table (4 KB)
« Total: 8 KB

11/17/15 CS61 Spring 2015 14

