
9/24/2015 CS61 Fall 2015

Assembly Language – Calling
Conventions

•  Learning Objectives
•  Define stack frame
•  Explain how the assembler sets up the stack for execution of

a function.
•  Locate parameters and local variables on the stack.

1

Invoking Functions

•  In certain very simple cases, you can just jump to a
function address (but this is quite unusual).

•  Consider the function:
extern void g(void);

void f(void) {
 g();
}

•  After we execute g, there is nothing left to be done in
function f; therefore, transferring control to g via a
simple jump instruction works.

9/24/2015 CS61 Fall 2015 2

9/24/2015 CS61 Fall 2015 3

Use of jmp function of context

•  Note that the ability to use a jmp to invoke a function
is a product of the context, not the function being
called.

extern void g(void);

void f(void) {
 g();
 g();
 g();
}

•  The first two instances of calls to g require that
control return to a specific point in function f.

9/24/2015 CS61 Fall 2015 4

9/24/2015 CS61 Fall 2015 5

9/24/2015 CS61 Fall 2015 6

extern int sum(int a, int b);

int f(int a, int b) {

 return sum(a, b);
}

9/24/2015 CS61 Fall 2015 7

What if we turn off the optimizer?
pushl %ebp
movl %esp, %ebp
subl $24, %esp

movl 12(%ebp), %eax
movl 8(%ebp), %ecx
movl %ecx, -4(%ebp)
movl %eax, -8(%ebp)
movl -4(%ebp), %eax
movl -8(%ebp), %ecx

movl %eax, (%esp)
movl %ecx, 4(%esp)
calll sum
addl $24, %esp
popl %ebp
ret

9/24/2015 CS61 Fall 2015 8

Scribble

9/24/2015 CS61 Fall 2015 9

Calling Conventions

•  The way the compiler has agreed to use the stack,
registers and functions to enable functional
decomposition (and separate compilation).

•  Registers are divided into two sets:
•  Callee saved: the caller assumes that the contents of these

registers will be unchanged when the called functions return.
•  Implication: If the callee uses the registers, the callee must save them

and restore them.
•  esp, ebx, ebp, esi, edi

•  Caller saved: the caller assumes that these registers could
be lost in the called function.

•  Implication: The callee can use these registers any way it wants without
having to restore them.

•  eax, ecx, edx
9/24/2015 CS61 Fall 2015 10

The Caller Side

•  Save any registers necessary.
•  Push arguments on the stack.
•  Call the function

•  Push the return address on the stack
•  Jump to the function

9/24/2015 CS61 Fall 2015 11

Address space

Current stack

esp

The Callee Side

•  Save the frame pointer (ebp)
•  Set the frame pointer to the current

top of stack.
•  Adjust stack pointer to make space

for the stack frame
•  Leave space for all the local variables.
•  Maintain required alignment of stack

frames.
•  Inside the function:

•  Parameters are positive offsets from
ebp.

•  Locals are typically negative offsets
from the ebp.

9/24/2015 CS61 Fall 2015 12

Address space

Caller’s stack

Arguments

Return address
esp

9/24/2015 CS61 Fall 2015 13

Summing Up

•  Caller must save caller-saved registers it is using.
•  Callee must save callee-saved registers it intends to

use.
•  Caller pushes arguments and return address.
•  Callee creates (aligned) stack frame.
•  Arguments are positive offsets from frame pointer.
•  Locals are negative offsets from frame pointer.

9/24/2015 CS61 Fall 2015 14

