Introduction to Virtual Memory

• Learning Objectives
 • Explain how virtual memory forms the foundation of process isolation.
 • Explain what support hardware must provide to enable virtual memory.
What is Virtual Memory?

- Recall

```
0xFFFFFFFF
Kernel virtual memory
User Stack
Memory mapped region for shared libraries
Heap
Read/write data
Read-only code and data
```

```
0x08048000
0
```
What is Virtual Memory?

• Recall
• But: fork creates a second address space.
• How can two 32-bit address spaces both reside on a single 32-bit machine?
It’s all a lie!

- There are two different kinds of addresses:
 - **Physical addresses:**
 - Refer to specific locations in the actual memory (DRAM).
 - You may very well have less physical memory than your virtual address space is capable of addressing.
 - E.g., you can have a 32-bit machine with less than 4 GB of memory.
 - E.g., you can certainly have a 64-bit machine (with a 64-bit address space) that has less than 64 EB (Exabytes).
 - **Virtual addresses:**
 - These are the addresses that programs use.
 - Require that there is a mapping from virtual addresses to physical addresses.
Why VM?

I have the entire address space to myself!

You’re both wrong – I have the whole address space

Hey – I have the entire address space!
How?

CPU

Virtual Address

Magic

Physical Address

Memory
How?

CPU → Virtual Address → MMU (Memory Management Unit) → Physical Address → Memory
How VM Provides Process Isolation

Program 1

Stack
Heap
Text

Program 2

Stack
Heap
Text

Memory

VA 0x0010, please

MMU

VA 0x0010, please
Protection

Program 1

- Stack
- Heap
- Text

Program 2

- Stack
- Heap
- Text

Memory

MMU

VA 0x0010, please
Sure!
Protection

Program 1

Program 2

Heap

Stack

Text

Memory

MMU

VA 0x0010, please

Sure!

Heh, heh, yeah, I’d like his data too!

VA 0x0010, please
Protection

Program 1

Stack
Heap
Text

0x0
0xFFFF

Program 2

Stack
Heap
Text

0xFF
0xFFFF

Memory

MMU

Sure!

Heh, heh, yeah, I’d like his data too!

VA 0x0010, please

Sure!

VA 0x0010, please

Heh, heh, yeah, I’d like his data too!
VM: A Hardware/Software Partnership

- We need hardware support to provide virtual memory.
 - Why?
 - Invoking the operating system on every address access would be too slow.
- The Hardware
 - Provides a (fast) mechanism to map from a virtual address to a physical address
- The Software
 - Sets up the mappings that the hardware will execute
 - Manages the allocation of physical memory
 - Implements policies about how memory is shared.
Constraining the Mapping

• Recall that different parts of an address space support different operations:
 • Read-only text/data: cannot be modified
 • Implication: We must not be able to write certain parts of memory
 • Data should not be executed:
 • Implication: Not all parts of memory should be enabled for execution.

• The operating system is special software
 • We want the operating system to do many things that we don’t want normal processes to do: interact with devices, touch any process’s memory, etc.
 • Implication: The OS should have access to some memory locations that are inaccessible to regular processes.
Putting it all Together

• We ask the hardware to map a triple of:
 • Virtual address
 • Type of access (read, write, execute)
 • Privilege level

• The hardware will either:
 • Produce a physical address
 • Fault, due to:
 • The type of access is not allowed to the memory requested
 • The process requesting access does not have the appropriate privilege level to access the memory.