Harvard email address: *

Please indicate which course you are taking. *
- CS61 (College)
- CSCIE-61 (Extension)

How does the operating system ensure that a user process cannot clobber kernel memory? *
- It creates separate page tables for each process.
- It makes sure that any PTEs that reference kernel pages are not accessible to unprivileged processes.
- It places kernel pages in low addresses in physical memory
- It allocates memory in units of 4 KB

How does the operating system ensure that one user process cannot clobber another user process's data? *
- It creates separate page tables for each process.
- It makes sure that any PTEs that reference kernel pages are not accessible to unprivileged processes.
- It places kernel pages in low addresses in physical memory
- It allocates memory in units of 4 KB

The low order bits of a PTE are 001. This page is: *
- Not in the process's virtual address space.
- Valid, read-only to the process.
- Valid, read-only to the kernel.
- Valid, read-write to the process.
- Valid, read-write to the kernel.

The low order bits of a PTE are 111. This page is: *
- Not in the process's virtual address space.
- Valid, read-only to the process.
- Valid, read-only to the kernel.
- Valid, read-write to the process.
- Valid, read-write to the kernel.
The low order bits of a PTE are 010. This page is:

- [x] Not in the process's virtual address space.
- [] Valid, read-only to the process.
- [] Valid, read-only to the kernel.
- [] Valid, read-write to the process.
- [] Valid, read-write to the kernel.

The low order bits of a PTE are 101. This page is:

- [x] Not in the process's virtual address space.
- [] Valid, read-only to the process.
- [] Valid, read-only to the kernel.
- [] Valid, read-write to the process.
- [] Valid, read-write to the kernel.

Submit

Never submit passwords through Google Forms.