
11/19/15 CS61 Fall 2015 1 1 

Cool Things VM Provides 

•  Learning Objectives 
•  Explain how virtual memory provides abstractions such as: 

•  Contiguous allocation of memory 
•  Processes 
•  Fork 
•  Mmap 

•  Explain how virtual memory enables process isolation using: 
•  Per-process page tables 
•  Protection bits in PTEs 
•  Faults 
•  Validating user addresses (avoid the confused deputy problem) 



Pointer Arithmetic (It’s all Lies!) 

•  Recall how nicely we can calculate the addresses of 
data. 

•  For example 
int array[10];

•  Let’s say that this array is allocated at address 
0x1FFFC. 

•  What is &array[6]? 
•  We know that C allocates this array contiguously. 
•  BUT – it is only contiguous in the virtual address 

space. 
•  Need it be contiguous in physical memory? 

11/19/15 CS61 Fall 2015 2 



No! 

•  We’ve learned that virtual pages map individually to 
physical pages, so your address space might look 
like this: 

11/19/15 CS61 Fall 2015 3 



Moving on: Address Spaces 

•  At the very beginning of the semester, we introduced 
an address space. In the context of virtual memory, 
what exactly is an address space? 

11/19/15 CS61 Fall 2015 4 



Next up: fork

•  When we introduced fork, we said that it “creates a 
new process with its own address space.” 

•  Now that we understand virtual memory – what 
exactly does that mean? 

11/19/15 CS61 Fall 2015 5 



And … mmap

•  In assignment 3, we introduced mmap and we saw 
that it: 
•  Allows us to pretend that a file’s data is directly accessible in 

a process’s address space, and 
•  Allows us to share memory between two processes. 

•  In the context of VM, what does this mean? 

11/19/15 CS61 Fall 2015 6 



Let’s Talk About Process Isolation 

•  How does virtual memory protect processes from one 
another and the kernel from user processes? 

•  Protect processes from one another: 

•  Protect kernel from processes: 

11/19/15 CS61 Fall 2015 7 



Let’s Talk About Process Isolation 

•  How does virtual memory protect processes from one 
another and the kernel from user processes? 

•  Protect processes from one another: 
•  Each has its own page table. 
•  The operating system must ensure that a process’s pages 

are not accessible from another process’s page table (unless 
they are intended to be share). 

•  Protect kernel from processes: 

11/19/15 CS61 Fall 2015 8 



Let’s Talk About Process Isolation 

•  How does virtual memory protect processes from one 
another and the kernel from user processes? 

•  Protect processes from one another: 

•  Protect kernel from processes: 
•  The kernel (OS) runs in privileged mode 
•  The kernel’s memory is marked as being accessible only to 

code that runs in privileged mode. 

11/19/15 CS61 Fall 2015 9 



Bad Processes 

•  If the OS sets everything up correctly, when a 
process tries to violate process isolation: 
•  Touch kernel memory 
•  Touch another process’s memory 
•  Write hardware registers it’s not supposed to 

•  What happens? 

11/19/15 CS61 Fall 2015 10 



Bad Processes 

•  If the OS sets everything up correctly, when a 
process tries to violate process isolation: 
•  Touch kernel memory 
•  Touch another process’s memory 
•  Write hardware registers it’s not supposed to 

•  What happens? 
•  The processor generates a fault. 
•  When the processor takes a fault, the OS gains control. 
•  The OS could do whatever it wants: 

•  Kill the process 
•  Skip the instruction 

11/19/15 CS61 Fall 2015 11 



The Confused Deputy Problem 

•  When privileged code acts on behalf of unprivileged 
code and the unprivileged code tricks the privilieged 
code into doing something bad. 

•  Who is the deputy here? 

•  How could a process confuse the deputy? 

11/19/15 CS61 Fall 2015 12 



The Confused Deputy Problem 

•  When privileged code acts on behalf of unprivileged 
code and the unprivileged code tricks the privilieged 
code into doing something bad. 

•  Who is the deputy here? 
•  The OS 

•  How could a process confuse the deputy? 
•  While a process can’t write into privileged memory, the OS 

can. 
•  What if a process could somehow convince the OS to write 

something bad into a location that the process cannot write, 
but the kernel can!? 

•  How do we avoid that? 

11/19/15 CS61 Fall 2015 13 



Verifying Process Addresses 

•  Whenever a process passed an address to the 
operating system (e.g., a buffer, a string, etc), the 
operating system must verify that the process has the 
proper permissions to use the address in the way the 
kernel is being asked to. 

•  Examples: 
•  Ensure that the address is a valid address in the process’s 

address space. 
•  Ensure that if the process is trying to write the location, the 

page is writable. 

11/19/15 CS61 Fall 2015 14 



PTEs: The heart of VM protection 

•  Page table entries are at the heart of the operating 
system and hardware’s ability to maintain process 
isolation. 

•  Recall a virtual address (on 32-bit x86) 

•  The PTE must contain a page number; in addition it 
contains special bits. 

11/19/15 CS61 Fall 2015 15 

20 bit (virtual) page number 12-bit offset 

20 bit (physical) page number 12 bits of metadata 



PTE Meta-Data 

•  Both L1 and L2 page tables have three critical bits that 
provide protection: 

•  Bit 0: Present Bit 
•  0 indicates that the entire entry is invalid 
•  1 indicates the entry is valid 

•  Bit 1: Read/Write Bit 
•  0 indicates that the page (or entire set of pages represented by 

the referenced L2 page table) is read only. 
•  1 indicates that the page(s) are writable. 

•  Bit 2: User/Supervisor bit 
•  0 indicates that the page is accessible only to privileged code. 
•  1 indicates that the page is accessible to unprivileged code. 

11/19/15 CS61 Fall 2015 16 



Wrapping Up 

•  Virtual memory is a cooperative arrangement 
between the OS and the hardware. 

•  Process isolation is provided by proper management 
of virtual memory. 
•  Each process has its own page table 
•  Pages in the page table are described by present, read/

write, and privilege bits. Setting these bits correctly prevents 
processes from doing bad things. 

•  Whenever a process sends an address to the OS, the OS 
must ensure that the address is valid for the intended 
operation. 

11/19/15 CS61 Fall 2015 17 


